Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619877

RESUMO

Combining the phosphonic acid group with the sulfonic acid group in PEMs has been shown to be an effective strategy for improving the fuel cell performance. However, the interplay of two different ionic groups and the resulting effect on the membrane properties have not been fully elucidated. Here, we used classical molecular dynamics simulation to investigate the morphologies, transport properties and effects of ionic groups in a novel perfluorinated PEM containing two ionic groups (PFSA-PFPA) in comparison to the corresponding homopolymers. Phase separations between hydrophilic and hydrophobic domains are confirmed in these PEMs and result from the evolution of water clusters formed around the ionic groups. The combination of both ionic groups brings a complicated morphological feature in PFSA-PFPA, with near-cylindrical aqueous domains of large length scales interconnected by tortuous domains of small sizes. And we found that the self-diffusion coefficients of water molecules are strongly related to morphologies, with the water transport in PFSA-PFPA lying between two analogous homopolymers. At the molecular level, we found that the sulfonic and phosphonic acid groups have distinct effects on the coordination behaviors and the dynamics of water molecules and hydronium ions. Strong electrostatic interactions lead to compact coordination structures and sluggish dynamics of hydronium ions around phosphonic acid groups, which determine the morphological evolution and transport properties in PFSA-PFPA. Our study affords insights into the relationship between molecular characteristics and transport properties bridged by phase-separated morphologies in a novel PEM containing both sulfonic acid and phosphonic acid groups, which deepens the understanding of the interplay between two ionic groups and may inspire the rational design of high-performance PEMs.

2.
Adv Mater ; : e2400285, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613131

RESUMO

Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.

3.
Cell Death Dis ; 15(3): 217, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485717

RESUMO

Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.


Assuntos
Injúria Renal Aguda , Piroptose , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Injúria Renal Aguda/patologia , Inflamação/patologia , Proteínas NLR , Estresse do Retículo Endoplasmático
4.
Kidney Dis (Basel) ; 10(1): 51-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322631

RESUMO

Introduction: Perirenal fat is a pad that fills the retroperitoneal space outside the kidney, which affects kidney function in various ways. However, the association between perirenal fat and IgA nephropathy (IgAN) has not yet been elucidated. This study aimed to investigate the role of perirenal fat in predicting IgAN progression. Methods: A total of 473 patients with biopsy-proven IgAN and follow-up information were recruited, and perirenal fat thickness (PFT) was measured using color Doppler ultrasonography at renal biopsy. Patients were divided into two groups according to the median PFT: the low-PFT group (PFT ≤1.34 cm, n = 239) and the high PFT group (PFT >1.35 cm, n = 234). A total of 473 healthy participants were included in the control group. Basic clinical characteristics were assessed at the time of renal biopsy, and the relationship between PFT and combined endpoints was analyzed. The renal composite endpoints were defined as a two-fold increase in blood creatinine level, end-stage renal disease (dialysis over 3 months). Kaplan-Meier survival analysis was used to explore the role of PFT in the progression of IgAN. Three clinicopathological models of multivariate Cox regression analysis were established to evaluate the association between PFT and renal prognosis in patients with IgAN. Results: Compared to healthy subjects, patients with IgAN showed significantly higher PFT. After a median follow-up of 50 months, 75 of 473 patients (15.9%) with IgAN reached renal composite endpoints. Among those, 13 of 239 patients (5.4%) were in the low PFT group, and 62 of 234 patients (26.5%) were in the high PFT group (p < 0.001). The results of three Cox regression models (including demographics, pathological and clinical indicators, and PFT) demonstrated that a higher PFT was significantly associated with a higher risk of reaching renal composite endpoints in patients with IgAN. Conclusion: This study indicated a positive relationship between PFT at renal biopsy and renal progression in patients with IgAN, suggesting that perirenal fat might act as a marker of poor prognosis in patients with IgAN.

5.
Nat Commun ; 15(1): 1468, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368428

RESUMO

Since thermoelectric materials have different physical and chemical properties, the design of contact layers requires dedicated efforts, and the welding temperatures are distinctly different. Therefore, a general interface design and connection technology can greatly facilitate the development of thermoelectric devices. Herein, we proposed a screening strategy for the contact materials based on the calculation of phase diagram method, and Mg2Ni has been identified as a matched contact layer for n-type Mg3Sb2-based materials. And this screening strategy can be effectively applied to other thermoelectric materials. By adopting the low-temperature sintering silver nanoparticles technology, the Zintl phase thermoelectric device can be fabricated at low temperature but operate at medium temperature. The single-leg n-type Mg3.15Co0.05SbBi0.99Se0.01 device achieves an efficiency of ~13.3%, and a high efficiency of ~11% at the temperature difference of 430 K has been realized for the Zintl phase thermoelectric device comprised together with p-type Yb0.9Mg0.9Zn1.198Ag0.002Sb2. Additionally, the thermal aging and thermal cycle experiments proved the long-term reliability of the Mg2Ni/Mg3.15Co0.05SbBi0.99Se0.01 interface and the nano-silver sintering joints. Our work paves an effective avenue for the development of advanced devices for thermoelectric power generation.

6.
J Cell Mol Med ; 28(3): e18073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063077

RESUMO

Diabetic kidney disease (DKD) can lead to accumulation of glucose upstream metabolites due to dysfunctional glycolysis. But the effects of accumulated glycolysis metabolites on podocytes in DKD remain unknown. The present study examined the effect of dihydroxyacetone phosphate (DHAP) on high glucose induced podocyte pyroptosis. By metabolomics, levels of DHAP, GAP, glucose-6-phosphate and fructose 1, 6-bisphosphate were significantly increased in glomeruli of db/db mice. Furthermore, the expression of LDHA and PKM2 were decreased. mRNA sequencing showed upregulation of pyroptosis-related genes (Nlrp3, Casp1, etc.). Targeted metabolomics demonstrated higher level of DHAP in HG-treated podocytes. In vitro, ALDOB expression in HG-treated podocytes was significantly increased. siALDOB-transfected podocytes showed less DHAP level, mTORC1 activation, reactive oxygen species (ROS) production, and pyroptosis, while overexpression of ALDOB had opposite effects. Furthermore, GAP had no effect on mTORC1 activation, and mTORC1 inhibitor rapamycin alleviated ROS production and pyroptosis in HG-stimulated podocytes. Our findings demonstrate that DHAP represents a critical metabolic product for pyroptosis in HG-stimulated podocytes through regulation of mTORC1 pathway. In addition, the results provide evidence that podocyte injury in DKD may be treated by reducing DHAP.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Fosfato de Di-Hidroxiacetona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Diabetes Mellitus/metabolismo
7.
ACS Appl Mater Interfaces ; 16(1): 907-914, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146641

RESUMO

Entropy engineering is aneffective scheme to reduce the thermal conductivity of thermoelectric materials, but it inevitably deteriorates the carrier mobility. Here, we report the optimization of thermoelectric performance of PbTe by combining entropy engineering and nanoprecipitates. In the continuously tuned compounds of Pb0.98Na0.02Te(1-2x)SxSex, we show that the x = 0.05 sample exhibits an exceptionally low thermal conductivity relative to its configuration entropy. By introducing Mn doping, the produced temperature-dependent nanoprecipitates of MnSe cause the high-temperature thermal conductivity to be further reduced. A very low lattice thermal conductivity of 0.38 W m-1 K-1 is achieved at 825 K. Meanwhile, the carrier mobility of the samples is only slightly influenced, owing to the well-controlled configuration entropy and the size of nanoprecipitates. Finally, a high peak zT of ∼2.1 at 825 K is obtained in the Pb0.9Na0.04Mn0.06Te0.9S0.05Se0.05 alloy.

8.
ACS Appl Mater Interfaces ; 15(48): 56064-56071, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990531

RESUMO

Commercial Bi2Te3-based thermoelectric (TE) coolers typically comprise equal-size p- and n-type legs. However, this traditional structure limits the cooling temperature differences of TE coolers (TECs) due to identical current density, when their electrical or thermal characteristics differ significantly. This work presents a novel design of p- and n-type TE legs to optimize the performance of TECs. The cooling properties of the materials are initially calculated by theoretical equations and then evaluated by using a combination of finite element simulations and experiments. The research findings suggest that by utilizing higher ZT p-type materials to enhance the TEC cooling performance, further optimization of the ratio of the cross-sectional area of the TE legs (Ap/An) improves the structural matching of the legs, which achieves the maximum figure of merit Z and leads to a 5.4% increase in cooling power density. Additionally, the TEC with optimized Ap/An increases the cooling temperature difference by 3.3 and 2.7 K for the same current at hot side temperatures of 300 and 315 K, respectively, while the coefficient of performance remains unchanged. Moreover, the maximum cooling temperature difference reaches 70 and 74 K, respectively. We anticipate that our results will guide the design and optimization of the TECs.

9.
Chembiochem ; 24(24): e202300606, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837285

RESUMO

The development of light-triggered ruthenium (Ru) nanophotocages has revolutionized conventional methods of drug administration, thereby facilitating cancer therapy in a noninvasive and temperate manner. Ru nanophotocages employ a distinct approach known as photoactivated chemotherapy (PACT), wherein light-induced ligand dissociation yields a toxic metal complex or a ligand capable of performing other functions such as optically controlled protein degradation and drug delivery. Simultaneously, this process is accompanied by the generation of reactive oxygen species (ROS), which serve as an effective anticancer agent in combination with PACT and photodynamic therapy (PDT). Due to its exceptional attributes of extended tissue penetration, and minimized tissue damage, red light or near-infrared light is widely acknowledged as the "phototherapeutic window" (650-900 nm). In this Concept, we present an overview of the most recent advancements in Ru nanophotocages within the phototherapeutic range. Diverse aspects, including design principles, photocaging efficacy, photoactivation mechanisms, and potential applications in the field of biomedical chemistry, are discussed. Questions and challenges regarding their synthesis, characterization, and applications are also discussed. This Concept would foster further exploration into the realm of Ru nanophotocages.


Assuntos
Antineoplásicos , Complexos de Coordenação , Fotoquimioterapia , Rutênio , Rutênio/química , Ligantes , Complexos de Coordenação/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química
10.
J Nanobiotechnology ; 21(1): 333, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717020

RESUMO

BACKGROUND: Curcumin (Cur), a bioactive component of Chinese traditional medicine, has demonstrated inhibitory properties against cancer cell proliferation while synergistically enhancing the anticancer efficacy of erlotinib (Er). However, the individual limitations of both drugs, including poor aqueous solubility, lack of targeting ability, short half-life, etc., and their distinct pharmacokinetic profiles mitigate or eliminate their combined antitumor potential. RESULTS: In this study, we developed a molybdenum disulfide (MoS2)-based delivery system, functionalized with polyethylene glycol (PEG) and biotin, and co-loaded with Cur and Er, to achieve efficient cancer therapy. The MoS2-PEG-Biotin-Cur/Er system effectively converted near-infrared (NIR) light into heat, thereby inducing direct photothermal ablation of cancer cells and promoting controlled release of Cur and Er. Biotin-mediated tumor targeting facilitated the selective accumulation of MoS2-PEG-Biotin-Cur/Er at the tumor site, thus enhancing the synergistic antitumor effects of Cur and Er. Remarkably, MoS2-PEG-Biotin-Cur/Er achieved the combination of synergistic chemotherapy and photothermal therapy (PTT) upon NIR irradiation, effectively suppressing lung cancer cell proliferation and inhabiting tumor growth in vivo. CONCLUSIONS: The as-synthesized MoS2-PEG-Biotin-Cur/Er, featuring high targeting ability, NIR light-responsive drug release, and the integration of synergistic chemotherapy and PTT, may provide a promising strategy for the treatment of lung cancer in clinical practice.


Assuntos
Curcumina , Neoplasias Pulmonares , Humanos , Curcumina/farmacologia , Cloridrato de Erlotinib/farmacologia , Terapia Fototérmica , Biotina , Molibdênio , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis
11.
Ren Fail ; 45(1): 2230318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37427767

RESUMO

Podocytes play a critical role in maintaining normal glomerular filtration, and podocyte loss from the glomerular basement membrane (GBM) initiates and worsens chronic kidney disease (CKD). However, the exact mechanism underlying podocyte loss remains unclear. Fructose-2,6-biphosphatase 3 (PFKFB3) is a bifunctional enzyme that plays crucial roles in glycolysis, cell proliferation, cell survival, and cell adhesion. This study aimed to determine the role of PFKFB3 in angiotensin II (Ang II) kidney damage. We found that mice infused with Ang II developed glomerular podocyte detachment and impaired renal function accompanied by decreased PFKFB3 expression in vivo and in vitro. Inhibition of PFKFB3 with the PFKFB3 inhibitor 3PO further aggravated podocyte loss induced by Ang II. In contrast, activating PFKFB3 with the PFKFB3 agonist meclizine alleviated the podocyte loss induced by Ang II. Mechanistically, PFKFB3 knockdown likely aggravate Ang II-induced podocyte loss by suppressing talin1 phosphorylation and integrin beta1 subunit (ITGB1) activity. Conversely, PFKFB3 overexpression protected against Ang II-induced podocyte loss. These findings suggest that Ang II leads to a decrease in podocyte adhesion by suppressing PFKFB3 expression, and indicates a potential therapeutic target for podocyte injury in CKD.


Assuntos
Fosfofrutoquinase-2 , Podócitos , Insuficiência Renal Crônica , Animais , Camundongos , Angiotensina II/efeitos adversos , Regulação para Baixo , Fosforilação , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Fosfofrutoquinase-2/genética
12.
Cell Signal ; 109: 110777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329999

RESUMO

An increasing number of studies have shown that immune inflammatory response plays a vital role in diabetic kidney disease (DKD). Nod-like receptor protein 3 (NLRP3) inflammasome-dependent inflammatory response is a key mechanism in the initiation and development of DKD. The stimulator of interferon genes (STING) is an adaptor protein that can drive noninfectious inflammation and pyroptosis. However, the mechanism of STING regulating immune inflammation and the interaction with NLRP3-dependent pyroptosis in high glucose state still remains unclear. This study evaluated the potential role of STING in high glucose (HG)-induced podocyte inflammation response. STING expression was significantly increased in db/db mice, STZ-treated diabetic mice, and HG-treated podocytes. Podocyte-specific deletion of STING alleviated podocyte injury, renal dysfunction, and inflammation in STZ-induced diabetic mice. STING inhibitor (H151) administration ameliorated inflammation and improved renal function in db/db mice. STING deletion in podocytes attenuated the activation of the NLRP3 inflammasome and podocyte pyroptosis in STZ-induced diabetic mice. In vitro, modulated STING expression by STING siRNA alleviated pyroptosis and NLRP3 inflammasome activation in HG-treated podocytes. NLRP3 over-expression offset the beneficial effects of STING deletion. These results indicate that STING deletion suppresses podocyte inflammation response through suppressing NLRP3 inflammasome activation and provide evidence that STING may be a potential target for podocyte injury in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefropatias Diabéticas/metabolismo , Proteínas NLR/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Inflamação/metabolismo
13.
Cell Prolif ; 56(11): e13479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37057309

RESUMO

Alteration of metabolic phenotype in podocytes directly contributes to the development of albuminuria and renal injury in conditions of diabetic kidney disease (DKD). This study aimed to identify and evaluate liver receptor homologue-1 (LRH-1) as a possible therapeutic target that alleviates glutamine (Gln) metabolism disorders and mitigates podocyte injury in DKD. Metabolomic and transcriptomic analyses were performed to characterize amino acid metabolism changes in the glomeruli of diabetic mice. Next, Western blotting, immunohistochemistry assays, and immunofluorescence staining were used to detect the expression of different genes in vitro and in vivo. Furthermore, Gln and glutamate (Glu) content as well as ATP generation were examined. A decrease in LRH-1 and glutaminase 2 (GLS2) expression was detected in diabetic podocytes. Conversely, the administration of LRH-1 agonist (DLPC) upregulated the expression of GLS2 and promoted glutaminolysis, with an improvement in mitochondrial dysfunction and less apoptosis in podocytes compared to those in vehicle-treated db/db mice. Our study indicates the essential role of LRH-1 in governing the Gln metabolism of podocytes, targeting LRH-1 could restore podocytes from diabetes-induced disturbed glutaminolysis in mitochondria.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo
14.
Kidney Int ; 103(4): 735-748, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731609

RESUMO

Activation of the renin-angiotensin system is associated with podocyte injury and has been well demonstrated as a pivotal factor in the progression of chronic kidney disease. Podocyte energy metabolism is crucial for maintaining their physiological functions. However, whether renin-angiotensin system activation promotes chronic kidney disease progression by disturbing the energy metabolism of podocytes has not been elucidated. Angiotensin II, the main active molecule of the renin-angiotensin system, plays a crucial role in chronic kidney disease initiation and progression, but its impact on podocyte metabolism remains unclear. Here, we demonstrate a rapid decrease in the expression of pyruvate kinase M2, a key glycolytic enzyme, and reduced glycolytic flux in podocytes exposed to angiotensin II in vivo and in vitro. Podocyte-specific deletion of pyruvate kinase M2 in mice aggravated angiotensin II-induced glomerular and podocyte injury with foot process effacement and proteinuria. The inhibition of glycolysis was accompanied by adenosine triphosphate deficiency, cytoskeletal remodeling and podocyte apoptosis. Mechanistically, we found that angiotensin II-induced glycolysis impairment contributed to an insufficient energy supply to the foot process, leading to podocyte injury. Additionally, pyruvate kinase M2 expression was found to be reduced in podocytes from kidney biopsies of patients with hypertensive nephropathy and diabetic kidney disease. Thus, our findings suggest that glycolysis activation is a potential therapeutic strategy for podocyte injury.


Assuntos
Nefropatias Diabéticas , Podócitos , Insuficiência Renal Crônica , Camundongos , Animais , Podócitos/patologia , Angiotensina II/metabolismo , Anaerobiose , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Nefropatias Diabéticas/patologia , Insuficiência Renal Crônica/patologia , Glicólise
15.
Int J Endocrinol ; 2022: 2550744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507087

RESUMO

Background: Perirenal fat (PRF) has multiple effects on the kidney through its physical structure and adipocytokine-secreting ability. The present study explored the relationship between PRF thickness and the onset and progression of albuminuria in patients with diabetes. Methods: In the cross-sectional analysis, we screened 959 patients from 8764 subjects with type 2 diabetes mellitus (T2DM) who met the inclusion criteria and measured their perirenal fat thickness (PFT) using color Doppler ultrasound. A group of laboratory indexes were included in the analysis models. In a longitudinal study, a total of 218 patients with a baseline UACR <30 mg/g were included in the follow-up study. Results: In a cross-sectional analysis, patients with diabetes and higher PFT presented with higher albuminuria. Multiple logistic regression analysis indicated that PFT was an independent risk factor for the degree of albuminuria in patients with T2DM (odds ratio = 4.186, 95%CI: 2.290-7.653, P < 0.001). In a longitudinal study, 218 albuminuria-free patients with T2DM at the baseline were followed up for a mean of 12.3 months. Based on the cutoff value from the ROC diagnostic test in the cross-sectional study, patients were divided into two groups: higher PFT (H-PFT) and lower PFT (L-PFT). Kaplan-Meier survival curve analysis showed that H-PFT was associated with a higher incidence of albuminuria than L-PFT (log-rank test, χ2 = 4.522, P = 0.033). Cox regression analysis showed that PFT was a risk factor for the earlier onset of albuminuria (hazard ratio 2.83, 95% CI: 1.34-4.88, P < 0.001). Conclusions: PRF evaluated by color Doppler ultrasound is an easy and reliable tool for predicting the onset and progression of albuminuria in patients with T2DM.

16.
Infect Drug Resist ; 15: 4927-4933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060238

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKP), an emerging pathotype derived from K. pneumoniae, frequently causes invasive infections of multiple organs and is associated with both high disability and fatality rates. In this study, a case of meningitis in a young infant caused by hvKP is presented. Cytological and biochemical examinations of the cerebrospinal fluid (CSF) revealed purulent meningitis, a diagnosis that was confirmed by a positive CSF culture result. The pathogen was identified as hvKP through analysis of positive virulence-associated genes. Meanwhile, hvKP was also isolated from stool samples of both the infant and her father. Antimicrobial susceptibility, capsular typing, and multilocus sequence typing (MLST) of three isolates from the infant's CSF and stool and her father's stool samples were analyzed. The three K. pneumoniae isolates were susceptible to all antibiotics except ampicillin and were identified as capsular serotype K2 and sequence type 86. These genetic relatedness analyses indicated that the strain isolated from the infant's CSF might have originated from her father's stool via familial transmission. This case is the first report of meningitis in an infant due to hvKP transmitted within a family.

17.
Cell Signal ; 99: 110443, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988808

RESUMO

Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.


Assuntos
Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Fosfato de Di-Hidroxiacetona/metabolismo , Glicerídeos/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfolipídeos/metabolismo , Glicólise , Lipídeos , NAD/metabolismo , Fosfatos/metabolismo , Podócitos/metabolismo
18.
Metabolism ; 134: 155245, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780908

RESUMO

INTRODUCTION: Compromised glycolysis in podocytes contributes to the initiation of diabetic kidney disease (DKD). Podocyte injury is characterized by cytoskeletal remodeling and foot process fusion. Compromised glycolysis in diabetes likely leads to switch of energy supply in podocyte. However, the underlying mechanism by which disturbed energy supply in podocytes affects the cytoskeletal structure of podocytes remains unclear. METHODS: Metabolomic and transcriptomic analyses were performed on the glomeruli of db/db mice to examine the catabolism of glucose, fatty, and amino acids. Ornithine catabolism was targeted in db/db and podocyte-specific pyruvate kinase M2 knockout (PKM2-podoKO) mice. In vitro, expression of ornithine decarboxylase (ODC1) was modulated to investigate the effect of ornithine catabolism on mammalian target of rapamycin (mTOR) signaling and cytoskeletal remodeling in cultured podocytes. RESULTS: Multi-omic analyses of the glomeruli revealed that ornithine metabolism was enhanced in db/db mice compared with that in db/m mice under compromised glycolytic conditions. Additionally, ornithine catabolism was exaggerated in podocytes of diabetic PKM2-podoKO mice compared with that in diabetic PKM2flox/flox mice. In vivo, difluoromethylornithine (DFMO, inhibitor of ODC1) administration reduced urinary albumin excretion and alleviated podocyte foot process fusion in db/db mice. In vitro, 2-deoxy-d-glucose (2-DG) exposure induced mTOR signaling activation and cytoskeletal remodeling in podocytes, which was alleviated by ODC1-knockdown. Mechanistically, a small GTPase Ras homolog enriched in the brain (Rheb), a sensor of mTOR signaling, was activated by exposure to putrescine, a metabolic product of ornithine catabolism. CONCLUSION: These findings demonstrate that compromised glycolysis in podocytes under diabetic conditions enhances ornithine catabolism. The metabolites of ornithine catabolism contribute to mTOR signaling activation via Rheb and cytoskeletal remodeling in podocytes in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Glicólise , Mamíferos/metabolismo , Camundongos , Ornitina/farmacologia , Serina-Treonina Quinases TOR/metabolismo
19.
Int J Biol Sci ; 18(10): 4026-4042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844803

RESUMO

Podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD) and is associated with mitochondrial abnormalities. Defective mitochondrial DNA (mtDNA) replication results in mitochondrial dysfunction. However, whether podocyte mtDNA replication is impaired in DKD is still unclear. A-kinase anchoring protein 1 (AKAP1) is localized in the outer mitochondrial membrane (OMM) and acts as a regulator and conductor of mitochondrial signals. Herein, we investigated the role of AKAP1 in high glucose-induced mtDNA replication. Decreased mtDNA replication and mitochondrial dysfunction occurred in podocytes of DKD. AKAP1 expression was up-regulated, and protein kinase C (PKC) signaling was activated under hyperglycemic conditions. AKAP1 recruited PKC and mediated La-related protein 1 (Larp1) phosphorylation, which reduced the expression of mitochondrial transcription factor A (TFAM), a key factor in mtDNA replication. In addition, mtDNA replication, mitochondrial function and podocyte injury were rescued by knocking down AKAP1 expression and the PKC inhibitor enzastaurin. In contrast, AKAP1 overexpression worsened the impairment of mtDNA replication and podocyte injury. In conclusion, our study revealed that AKAP1 phosphorylates Larp1 via PKC signaling activation to decrease mtDNA replication, which accelerates mitochondrial dysfunction and podocyte injury in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Fosforilação , Podócitos/metabolismo
20.
Infect Drug Resist ; 15: 2995-3004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711514

RESUMO

Background: Although the principles for blood cultures (BCs) guidelines provide a recommendation for collection patterns, the complexity of clinical practice occasionally prompts clinicians to adopt non-standard collection patterns. Here, we investigate the influences of different BC collection patterns on detection of pathogens. Methods: The BC collection patterns of 96 hospitals were surveyed online. And a retrospective study of BC data from a tertiary hospital was conducted. Results: The results showed that 53.1% of hospitals adopted the recommended patterns. Among the 1439 episodes of true-positive BCs, 67.4% were found in both the left- and right-sided bottles; 58.2% were found in both aerobic and anaerobic bottles. Conclusion: The present study suggested that the rate of standard collection patterns of blood culture was low and the non-standard collection patterns were associated with decreased detection of pathogens. Simultaneous collection of blood on the left and right sides was recommended as an effective pattern of BC collection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...